Topic 1: Exponent Rules

1.
$$3(2x^2y)(y^2)$$

2.
$$(3x^4)^2(x^2)^3$$

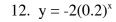
3.
$$\frac{12x^2y^3}{3xy^5}$$

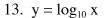
4.
$$(8x^5y)^{-2}$$

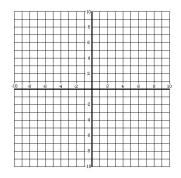
5.
$$(3x^2)^0$$

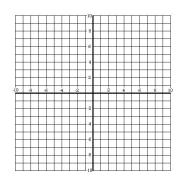
7.
$$\sqrt[3]{x^{12}}$$

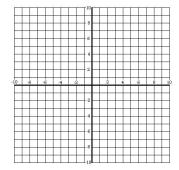
8.
$$\sqrt[2]{x^6}$$


$$9. \left(\frac{b^{2n}}{b^{-2n}}\right)^{\frac{1}{2}}$$


10.
$$(3^{-2}x^{-4}y)^{\frac{-1}{2}}$$
 show answer as radical


Name____


Topic 2: Sketching graphs


11.
$$y = 0.5(2)^x$$

14. Describe when the function $f(x) = b^x$ will represent growth or decay.

Topic 3: Solving for x

15.
$$8.5 = x^{\frac{-2}{3}}$$

16.
$$520 = 20x^{\frac{9}{5}} + 60$$

17.
$$\frac{1}{5}\sqrt{x^5} = 2.1$$

Topic 4: Extensions and Applications

- 18. Tom is investing \$400 in an account that earns an APR of 7% interest continuously.
 - a. How much will the account be worth in 10 years?
 - b. How long until the account is worth a million dollars?
- 19. Find the projected population of Janesville in 2015 if the population was 142,000 in 1970 and the annual growth rate is 4%
- 20. Sociologists have found that information spreads among a population at an exponential rate. Suppose that the function $y = 525(1 e^{-0.038t})$ models the number of people in a town of 525 people who have heard news within t hours of its distribution. When will 75% of the population be aware of new information?

- 21. $f(x) = 1 \cdot n^x$ and represents exponential growth. $g(x) = 1 \cdot m^x$ and represents exponential decay.
 - a. Sketch a graph with possible graphs for both f(x) and g(x) shown.
 - b. On your graph, clearly indicate the ordered pair where they <u>must</u> intersect.

Chapter: 11-1 to 11-3

Topic 1: Exponent Rules $1. 3(2x^2y)(y^2)$

1.
$$3(2x^2y)(y^2)$$

 $6x^2y^3$

3.
$$\frac{12x^2y^3}{3xy^5} = \frac{4x}{y^2}$$

5.
$$(3x^2)^0 = 1$$

7.
$$\sqrt[3]{x^{12}} = x^{(2/3)} = x^4$$

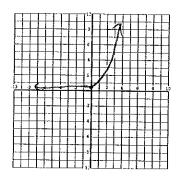
9.
$$\left(\frac{b^{2n}}{b^{-2n}}\right)^{\frac{1}{2}}$$
 $\left(b^{2n+2n}\right)^{1/2}$ $\left(b^{4n}\right)^{1/2} = b^{2n}$


2.
$$(3x^4)^2(x^2)^3$$

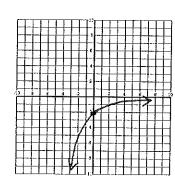
 $9x^8x^6 = 9x^{19}$

4.
$$(8x^5y)^{-2}$$
 $8 \times y^{-2} = \frac{1}{64 \times \sqrt[6]{2}}$

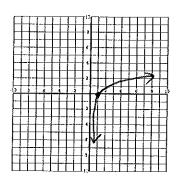
6.
$$\frac{16x^{-4}}{8}$$
 = $\frac{2}{1 \times^{4}}$

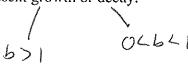

8.
$$\sqrt[3]{x^6} = \times \frac{6}{2} = \times^3$$

10. $(3^{-2}x^{-4}y)^{\frac{-1}{2}}$ show answer as radical



Topic 2: Sketching graphs


11.
$$y = 0.5(2)^x$$


12.
$$y = -2(0.2)^x$$

13.
$$y = log_{10} x$$

14. Describe when the function $f(x) = b^x$ will represent growth or decay.

Notebook/Homework Check:

Topic 3: Solving for x

$$15.(8.5) = (x^{\frac{-3}{5}})^{-3/2}$$

$$16. 520 = 20x^{\frac{2}{5}} + 60$$

$$17. \frac{1}{5}\sqrt{x^{5}} = 2.1 \cdot 5$$

$$18.5) = 3/2$$

$$18.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

$$19.5) = 3/2$$

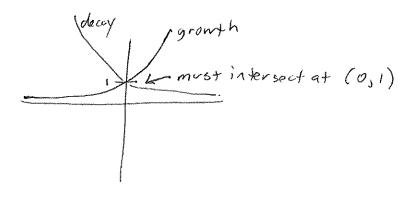
Topic 4: Extensions and Applications

- 18. Tom is investing \$400 in an account that earns an APR of 7% interest continuously.
 - a. How much will the account be worth in 10 years?
 - b. How long until the account is worth a million dollars?

$$\frac{1000,000 = 400e^{0.07t}}{10.2500 = he^{0.07t}}$$

$$\frac{7.82 = .07t}{.07} \qquad t = 111.8$$

A= 400e.07t A= 400e.07(10) A= 805.50


19. Find the projected population of Janesville in 2015 if the population was 142,000 in 1970 and the annual growth rate is 4%

20. Sociologists have found that information spreads among a population at an exponential rate. Suppose that the function $y = 525(1 - e^{-0.038t})$ models the number of people in a town of 525 people who have heard news within t hours of its distribution. When will 75% of the population be aware of new information?

.75(525)= 373.75

$$394 = 525(1 - e^{-.038t})$$
 $.75 = 1 - e^{-.038t}$
 $.25 = e^{-.038t}$
 $t = \frac{10.25}{-.038}$
 $10.25 = -.038t$
 $t = 36.5$

- 21. $f(x) = 1 \cdot n^x$ and represents exponential growth. $g(x) = 1 \cdot m^x$ and represents exponential decay.
 - a. Sketch a graph with possible graphs for both f(x) and g(x) shown.b. On your graph, clearly indicate the ordered pair where they <u>must</u> intersect.

