Name_____

** Quiz 1 Material **

Problem type 1: Evaluating Limits

11–32 Evaluate the limit, if it exists.

11.
$$\lim_{x \to 5} \frac{x^2 - 6x + 5}{x - 5}$$

18.
$$\lim_{h \to 0} \frac{(2+h)^3 - 8}{h}$$

20.
$$\lim_{t \to 1} \frac{t^4 - 1}{t^3 - 1}$$

44.
$$\lim_{x \to -2} \frac{2 - |x|}{2 + x}$$

29–39 Determine the infinite limit.

29.
$$\lim_{x\to 5^+} \frac{x+1}{x-5}$$

$$36. \lim_{x \to \pi^{-}} \cot x$$

38. If
$$2x \le g(x) \le x^4 - x^2 + 2$$
 for all x , evaluate $\lim_{x \to 1} g(x)$.

Problem Type 2: Sketching and graphs

- **9.** For the function f whose graph is shown, state the following.
 - (a) $\lim_{x \to -7} f(x)$
- (b) $\lim_{x \to -3} f(x)$
- (c) $\lim_{x\to 0} f(x)$

- (d) $\lim_{x \to 6^-} f(x)$
- $(e) \lim_{x \to 6^+} f(x)$
- (f) The equations of the vertical asymptotes.

15–18 Sketch the graph of an example of a function f that satisfies all of the given conditions.

15.
$$\lim_{x \to 0^{-}} f(x) = -1$$
, $\lim_{x \to 0^{+}} f(x) = 2$, $f(0) = 1$

Sec 1.4

Problem Type 3: Continuity

47. The signum (or sign) function, denoted by sgn, is defined by

$$\operatorname{sgn} x = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$$

- (a) Sketch the graph of this function.
- (b) Find each of the following limits or explain why it does not exist.

- (i) $\lim_{x \to 0^{+}} \operatorname{sgn} x$ (ii) $\lim_{x \to 0^{-}} \operatorname{sgn} x$ (iii) $\lim_{x \to 0} \operatorname{sgn} x$ (iv) $\lim_{x \to 0} |\operatorname{sgn} x|$

11–14 Use the definition of continuity and the properties of limits to show that the function is continuous at the given number a.

11.
$$f(x) = (x + 2x^3)^4$$
, $a = -1$

For #20, explain why the function is discontinuous at point a. Sketch the graph.

20.
$$f(x) = \begin{cases} \frac{x^2 - x}{x^2 - 1} & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$$
 $a = 1$

23–24 How would you "remove the discontinuity" of f? In other words, how would you define f(2) in order to make f continuous at 2?

23.
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

45. For what value of the constant c is the function f continuous on $(-\infty, \infty)$?

$$f(x) = \begin{cases} cx^2 + 2x & \text{if } x < 2\\ x^3 - cx & \text{if } x \ge 2 \end{cases}$$

Problem type 7: Average and instantaneous rate of change

EXAMPLE 1 Find an equation of the tangent line to the parabola $y = x^2$ at the point P(1, 1).

EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

Note: distance fallen is modelled by s(t) = 4.9t^2

EXAMPLE 1 Find an equation of the tangent line to the parabola $y = x^2$ at the point P(1,1).

** Quiz 3 Material **

Problem Type 4: IVT

53–56 Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval.

53.
$$x^4 + x - 3 = 0$$
, $(1, 2)$

Problem Type 5: sigma questions

14. Given that $\lim_{x\to 2} (5x - 7) = 3$, illustrate Definition 2 by finding values of δ that correspond to $\varepsilon = 0.1$, $\varepsilon = 0.05$, and $\varepsilon = 0.01$.

Problem Type 6: Derivative as slope/rate of change

- **13.** If a ball is thrown into the air with a velocity of 40 ft/s, its height (in feet) after t seconds is given by $y = 40t 16t^2$. Find the velocity when t = 2.
- **20.** Find an equation of the tangent line to the graph of y = g(x) at x = 5 if g(5) = -3 and g'(5) = 4.

41.
$$\lim_{h\to 0} \frac{\cos(\pi+h)+1}{h}$$

Problem type 7: Average and instantaneous rate of change

EXAMPLE 1 Find an equation of the tangent line to the parabola $y = x^2$ at the point P(1, 1).

EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

Note: distance fallen is modelled by s(t) = 4.9t^2

EXAMPLE 1 Find an equation of the tangent line to the parabola $y = x^2$ at the point P(1,1).

** Quiz 4 Material **

Problem Type 8: Derivative Graphs

EXAMPLE 1 The graph of a function f is given in Figure 1. Use it to sketch the graph of the derivative f'.

FIGURE 1

47. The figure shows the graphs of f, f', and f''. Identify each curve, and explain your choices.

Problem Type 9: Derivatives as Functions

EXAMPLE 2

- (a) If $f(x) = x^3 x$, find a formula for f'(x).
- (b) Illustrate this formula by comparing the graphs of f and f'.

EXAMPLE 3 If $f(x) = \sqrt{x}$, find the derivative of f. State the domain of f'.

** Quiz 1 Material **

Problem type 1: Evaluating Limits

11-32 Evaluate the limit, if it exists.

11-32 Evaluate the limit, if it exists.
11.
$$\lim_{x \to 5} \frac{x^2 - 6x + 5}{x - 5}$$
 | $\lim_{x \to 5} \frac{(x - 5)(x - 1)}{x - 5}$ | $\lim_{x \to 5} (x - 1) = 5 - 1 = 4$ | $\lim_{x \to 5} (x - 1) = 5 - 1 = 4$

$$(2+h)(4+4h+h^2) = 8 + 8h+2h^2$$

18.
$$\lim_{h\to 0} \frac{(2+h)^3-8}{h}$$
 $\lim_{h\to 0} \frac{8+12h+6h^2+h^3}{h} - 8$

$$(2+h)(4+4h+h^{2}) = 8 + 8h + 2h^{2}$$

$$(2+h)(4+4h+h^{2}) = 8 + 8h + 2h^{2}$$

$$(2+h)^{3} - 8$$

$$(12+6h+h^{2})$$

$$(12+$$

44.
$$\lim_{x \to -2} \frac{2 - |x|}{2 + x}$$
 $\frac{L}{x = -2.001}$ $\frac{R}{x = -1.999}$ Ans = |

29-39 Determine the infinite limit.

29.
$$\lim_{x \to 5^{+}} \frac{x+1}{x-5}$$
 $\frac{R}{x=5.001}$ $A = 0$

36.
$$\lim_{x \to \pi^{-}} \cot x$$
 $\lim_{x \to \pi^{-}} \left(\frac{1}{\tan x} \right)$

$$X = XI^{-} = 3.14 - .001$$

 $Y = -1000$

38. If
$$2x \le g(x) \le x^4 - x^2 + 2$$
 for all x , evaluate $\lim_{x \to 1} g(x)$.
 $2(1) \le g(x) \le 1^4 - 1^2 + 2$
 $2 \le g(x) \le 2$
 $\lim_{x \to 1} g(x) = 2$

Problem Type 2: Sketching and graphs

- **9.** For the function f whose graph is shown, state the following.
 - (a) $\lim_{x \to -7} f(x) \varnothing$
- (b) $\lim_{x \to -3} f(x) \varnothing$
- (c) $\lim_{x\to 0} f(x)$ ∞

(d) $\lim_{x \to 6^{-}} f(x) - \infty$

¥.,

- (e) $\lim_{x \to 6^+} f(x)$ **6**
- 11m f(x) = DNE
- (f) The equations of the vertical asymptotes.

15–18 Sketch the graph of an example of a function f that satisfies all of the given conditions.

15.
$$\lim_{x \to 0^{-}} f(x) = -1$$
, $\lim_{x \to 0^{+}} f(x) = 2$, $f(0) = 1$

Lim f(x) exists x>c f(c) exists f(x) = lim f(x)

** Quiz 2 Material **

Problem Type 3: Continuity

47. The *signum* (or sign) *function*, denoted by sgn, is defined by

- (a) Sketch the graph of this function.
- (b) Find each of the following limits or explain why it does not exist.

(i)
$$\lim_{x\to 0^+} \operatorname{sgn} x = \{ (ii) \lim_{x\to 0^-} \operatorname{sgn} x = - \}$$

(iii) $\lim_{x\to 0} \operatorname{sgn} x$ (iv) $\lim_{x\to 0} |\operatorname{sgn} x| = \{ (iii) \lim_{x\to 0} \operatorname{sgn} x = - \}$

11–14 Use the definition of continuity and the properties of limits to show that the function is continuous at the given

number a.

$$f(-1) = (-1 + 2(-1)^3)^4 = 81$$

11.
$$f(x) = (x + 2x^3)^4$$
, $a = -1$

Limit exist and also equals 81

:. F(x) is continuous at x=-1

For #20, explain why the function is discontinuous at point a. Sketch the graph.

20.
$$f(x) = \begin{cases} \frac{x^2 - x}{x^2 - 1} & \text{if } x \neq 1\\ 1 & \text{if } x = 1 \end{cases}$$

$$a=1$$
 $\frac{\times 0}{(x+1)}$

$$a = 1 \quad \frac{\chi(\chi - 1)}{(\chi + 1)(\chi - 1)} \quad \frac{\chi}{\chi + 1} \quad \frac{1}{1 + 1} = \frac{1}{2}$$

23–24 How would you "remove the discontinuity" of f? In other words, how would you denne f(z) ...

f continuous at 2?

23. $f(x) = \frac{x^2 - x - 2}{x - 2}$ $\frac{(x - 2)(x + 1)}{x - 2}$

23.
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

$$\frac{x-5}{(x-5)(x+1)}$$

$$x+1 = 2+1=3$$

45. For what value of the constant c is the function f continuous

on $(-\infty, \infty)$?

$$f(x) = \begin{cases} cx^2 + 2x & \text{if } x < 2 \\ x^3 - cx & \text{if } x \ge 2 \end{cases} \quad \begin{cases} 4 + 4 \\ 8 - 6 \end{cases}$$

$$4c+4 = 8-26$$
 $6c = 4$
 $6 = \frac{2}{3}$

** Quiz 3 Material **

Problem Type 4: IVT

53-56 Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval.

53.
$$x^4 + x - 3 = 0$$
, (1,2)
 $x = 1$
 $x = 2$
 $x = 3$
 $x = 1$
 $x = 2$
 $x = 1$
 $x = 2$
 $x = 1$
 $x = 1$

Problem Type 5: sigma questions

14. Given that $\lim_{x\to 2} (5x - 7) = 3$, illustrate Definition 2 by finding values of δ that correspond to $\varepsilon = 0.1$, $\varepsilon = 0.05$. and $\varepsilon = 0.01$.

$$\mathcal{E} = \mathcal{O} \mathcal{Z}$$
 Problem Type 6: Derivative as slope/rate of change

13. If a ball is thrown into the air with a velocity of 40 ft/s, its height (in feet) after t seconds is given by $y = 40t - 16t^2$. Find the velocity when t = 2.

after t seconds is given by
$$y = 40t - 16t^2$$
.
 $y \text{ when } t = 2$.
 $\frac{L}{t=1.999}$
 $y=16.029$
 $y=15.976$
 $\frac{15.976-16.029}{2.001-1.999} = \frac{-.048f^+}{.002} = -24f^+/5e^-$

20. Find an equation of the tangent line to the graph of y = g(x)at x = 5 if g(5) = -3 and g'(5) = 4. Slope

at
$$x = 5$$
 if $g(5) = -3$ and $g'(5) = 4$.
 $y - \frac{3}{y} = \frac{4}{m} \left(x - \frac{5}{x}\right)$

$$y + 3 = 4(x - 5)$$

$$y + 3 = 4(x - 5)$$

$$y + 3 = 4(x - 20)$$

Problem type 7: Average and instantaneous rate of change

Key

EXAMPLE 1 Find an equation of the tangent line to the parabola $y = x^2$ at the point P(1, 1).

$$\frac{L}{x=.999} \frac{R}{x=1.001}$$

$$y = .998 \quad y = 1.002$$

$$\frac{1.002 - .998}{1.001 - .999} = \frac{.004}{.002} = \frac{2}{.5lope}$$

$$y-\frac{1}{y}=\frac{2}{m}(x-\frac{1}{x})$$

EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

Note: distance fallen is modelled by $s(t) = 4.9t^2$

$$\frac{L}{x=4.999} \frac{R}{x=5.001}$$

$$5(x)=122.46 \qquad 5(x)=122.55$$

$$\frac{Y-Y}{X=4.999} = \frac{172.55-122.45}{5.001-4.599} = \frac{1}{.002} = \frac{500}{.002}$$

EXAMPLE 1 Find an equation of the tangent line to the parabola $y = x^2$ at the point P(Y, Y).

lley

** Quiz 4 Material **

Problem Type 8: Derivative Graphs

EXAMPLE 1 The graph of a function f is given in Figure 1. Use it to sketch the graph of the derivative f'.

FIGURE 1

X

47. The figure shows the graphs of f, f', and f''. Identify each curve, and explain your choices.

Problem Type 9: Derivatives as Functions

EXAMPLE 2

- (a) If $f(x) = x^3 x$, find a formula for f'(x).
- (b) Illustrate this formula by comparing the graphs of f and f'.

$$f'(x) = 3x^2 - 1$$

EXAMPLE 3 If $f(x) = \sqrt{x}$, find the derivative of f. State the domain of f'.

Work on the Back

$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$

$$\frac{(x+h)^3 - (x+h) - (x^3 - x)}{h} = \frac{(x^2 + 2xh + h^2)(x+h)}{x^3 + 3x^2h + 3xh^2 + h^3}$$

$$\frac{x^3 + 3x^2h + 3xh^2 + h^3 - x - h - x^3 + x}{h}$$

$$\lim_{h\to 0} \frac{h(3x^2 + 3xh + h^2 - 1)}{h} = \frac{3x^2 - 1}{h}$$