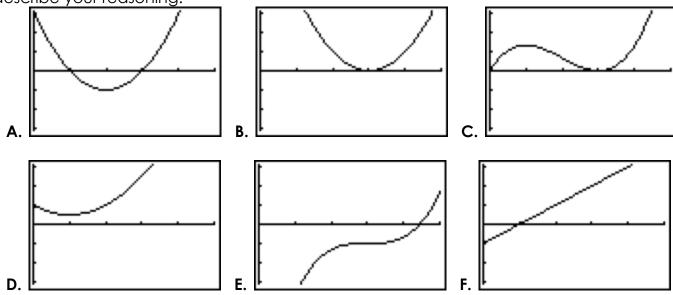
Recommended Review

State the Second Fundamental Theorem of Calculus

State the Average Value of a Function formula

State the derivative rules:

Power Rule: Product Rule:


Chain Rule: Quotient Rule:

Does differentiability imply integrability? Explain.

State 3 differences between critical numbers and inflection points.

The graphs below represent 3 functions and the derivatives of those functions. Identify the original functions and state which is the derivative of each. Use Complete Sentences to

describe your reasoning.

Recommended Review

State the Second Fundamental Theorem of Calculus When $f''(x) \ge 0$, $f(x) \ge conc. down f''(x) > 0$, $f(x) \ge conc. up$

State the Average Value of a Function formula from a tob $\frac{1}{b} \int_{0}^{b} f(x) dx$

State the derivative rules:

Power Rule:

$$f(x)=a\cdot x^n$$

 $f'(x)=an\cdot x^{n-1}$

Product Rule: f(x) = g(x) - h(x) $f'(x) = g'(x)h(x) + g(x) \cdot h(x)$

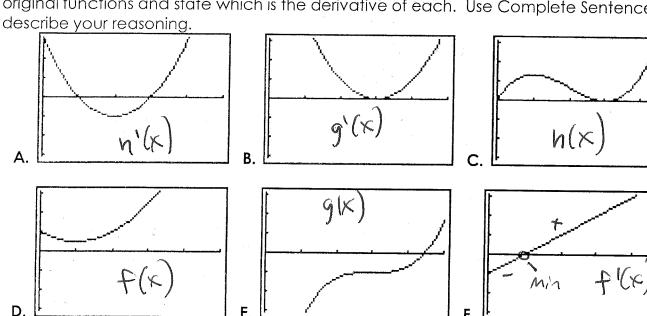
Chain Rule:
$$f(x) = g(h(x))$$
 Quotient Rule: $f(x) = \frac{g(x)}{h(x)}$

$$f'(x) = g'(h(x)) \cdot h'(x)$$

$$f'(x) = \frac{h(x) - g'(x) - g'(x)}{h(x)}$$

Quotient Rule:
$$f(x) = \frac{g(x)}{h(x)}$$

$$f'(x) = \frac{h(x) - g'(x) - g(x)h'(x)}{h(x)^2}$$


Does differentiability imply integrability? Explain.

State 3 differences between critical numbers and inflection points.

The graphs below represent 3 functions and the derivatives of those functions. Identify the

Second derit only of Inflection = change in

original functions and state which is the derivative of each. Use Complete Sentences to

